

Investigating Injuries

Tennis Elbow

Introductions

Gus Morrison

BSc Physiotherapy, MSc Sports Medicine, & Accredited S&C Coach (UKSCA)

f

in

Agenda

- Introduction
- Understanding Tennis Elbow
 - Clinical Presentations & Mechanism of Injury
 - Common Causes and Risk Factors
 - Anatomical Overview
- Clinical Assessment
 - ROM: Shoulder IR/ER, Elbow Flexion/Extension, Forearm Supination/Pronation
 - MMT: Shoulder IR/ER, Elbow Flexion/Extension, Wrist Extension,
 Grip Strength
- Case Study
 - Data Review and Analysis
- Treatment & Rehabilitation Strategies
- Q&A

Tennis Elbow

Tennis Elbow

- - Also known as Lateral Epicondylalgia or Lateral Epicondylitis
 - A tendinopathy affecting the common extensor tendon at the lateral epicondyle of the humerus.
 - It is caused by excessive or inappropriate loading of the tendon, often linked to repetitive wrist and forearm movements such as gripping, twisting, or swinging.

Clinical Presentations

- Elbow pain, especially on the lateral side of the elbow: Usually feels like:
 - Sharp or burning
 - Worse when twisting or bending the arm
 - Radiates from elbow to forearm and wrist
- Stiffness
- Pain and weak
- Weakened grip making it difficult to:
 - Shake hands or grip an object
 - Turn a doorknob
 - Hold a cup of coffee cup

Mechanism of Injury

- Associated with repetitive microtrauma to the extensor tendon attached at the lateral epicondylar region of the humerus, primarily the Extensor Carpi Radialis Brevis (ECRB) being most affected
 - Also involves trauma to:
 - Extensor Carpi Radialis Longus
 - Extensor Digitorum
 - Extensor Digiti Minimi
 - Extensor Carpi Ulnaris

Mechanism of Injury

- Sudden load spikes (big jump in activity volume, intensity, or frequency) can exceed tendon capacity.
- This can trigger a reactive tendinopathy:
 - Tendon cells produce more matrix.
 - Tendon thickens to reduce stress.
- Ongoing overload without recovery can lead to degenerative tendinopathy:
 - Disorganised collagen fibers.
 - Changes in tendon cell structure.
 - New blood vessel growth (neovascularisation).
- In tennis elbow, the common extensor tendon often shows both reactive and degenerative changes.

Anatomical Overview

Key structures involved:

- Extensor Carpi Radialis Brevis (ECRB)
- Extensor Digitorum
- Lateral Epicondyle

Risk Factors

- Acute spike in workload
- Repeated compression forces of the tendon e.g. overpressure into the wrist flexion
 - Occurs in activities like
 playing backhand in tennis
 if the wrist extensors and
 posterior shoulder muscles
 lack adequate strength/
 RFD capabilities

Risk Factors

Manual labour activities

- Exposed to high physical loads, forceful and repetitive activities
- Extreme non-neutral postures of the hand and arms
 - Work:
 - Plumbers, painters, carpenters, butchers.
 - Certain Sports:
 - Playing racket sports
 - Weightlifting
 - Poor form and incorrect equipment
 - Playing for long hours

Risk Factors

Non-manual labour activities

- Repetitive actions involved in computer use, typing, and gripping/squeezing the mouse for long periods of time
- Common in computer or desk work

Age:

Most common in adults between 30 to 60 years old.

Others:

Smoking, obesity, and certain medications.

Clinical Assessments

Range of Motion: Shoulder Internal and External Rotation

 Can be tested in seated or supine position with the device attached on the wrist

Range of Motion: Elbow Flexion and Extension

- Can be tested in seated or supine position
- Best tested with the device attached at the wrist

Range of Motion: Forearm Supination and Pronation

- Can be tested in seated position with elbow
- in 90 degrees flexion and neutral rotation

Muscle Testing: Shoulder Internal Rotation

 Can be tested in seated or prone position with shoulder abducted to 90 degrees and elbow flexed to 90 degrees

Muscle Testing: Shoulder External Rotation

 Can be tested in seated or prone position with shoulder abducted to 90 degrees and elbow flexed to 90 degrees

Muscle Testing: Elbow Flexion and Extension

- Best tested in supine position
- Can be tested with or without a strap

Muscle Testing: Wrist Extension

 Can be tested seated with forearm pronated and resting on table or on the tester's arm

Muscle Testing: Grip Strength

 Can be tested seated with elbow flexed in 90 degrees, forearm and wrist in neutral position

Case Study

Objective Examination & Diagnosis

Observation -

Cleared shoulder and cervical spine Fixed flexion deformity of right elbow from radial head fracture 30 years ago

Range of movement -

Fixed flexion deformity of 10 degrees of the right elbow

Full ROM into flexion

Reduced range at end range supination with a soft end feel

Objective Examination & Diagnosis

Special tests -

Cozens -ve

Mills -ve

Medial epicondylitis test +ve

Hook test -ve

Biceps squeeze test -ve

Tinnels -ve

Chair sign -ve

Valgus/varus stress test -ve

Palpation -

Tender on palpation of the lateral epicondyle and common extensor tendon

	Test	Unit	Expected	Left %	Right %	No Laterality %	Select
A	Pronation (Elbow)	Degrees	74.0	123.0%	125.7%	•	
A	Supination (Elbow)	Degrees	68.0	101.5%	77.9%		
D	Push up (Elbow)	Repetitions	13.0			92.3%	
D	Posterior shoulder endurance test (Shoulder)	Repetitions	58.0	106.9%	70.7%		
Ga	Flexion (Elbow)	Newtons	166.2	158.2%	163.1%	1.5	
6	Extension (Elbow)	Newtons	112.8	156.0%	161.3%		
6	Internal rotation (Shoulder)	Newtons	108.0	115.7%	135.2%		
4	External rotation (Shoulder)	Newtons	84.0	107.1%	51.2%		
2014							
C.	Athletic shoulder test T (Shoulder)	Newtons	60.6	110.6%	71.0%		

Problem List

Top 3 deficits

- Very low calorie consumption for levels of exercise
- Likely low energy availability
- Reduced range of movement into elbow supination
- Reduced elbow endurance
- Reduced external rotation and long lever strength

Rehabilitation

Patient Roadmap

Range of movement

Supination 68 degrees

Strength

- External rotation 84 Newtons
- Athletic shoulder T test 67 Newtons

Endurance

- Push up test 13 reps
- Posterior shoulder endurance test 58 seconds

Block 1

Objectives:

- Improve energy balance via nutritionist referral
- Increase range of movement into supination to 100%

Elbow Range of movement Supination

Target exercise

Exercise	Sets	Reps	Load	Rest	Frequency	
Eccentric pronation	4	10	3-5 RIR	30	3	/ ⊗
Eccentric supinated pull up	4	10	3-5 RIR	30	3	/ ⊗
Soft tissue massage of pronators	NA	NA	NA	NA	2	/ ⊗

Total sets per week: 24

RIR = repetitions in reserve

SIR = seconds in reserve

Add Exercise

Block 2

Objectives:

- Increase elbow endurance to 13 push ups in 30 seconds
- Increase posterior shoulder endurance to 58 seconds

Elbow Endurance Push up

Regression 1

Exercise	Sets	Reps	Load	Rest	Frequency	1
Kneeling push up	3	15	3-5 RIR	60	3	/ ⊗
Oumb bell bench press	3	15	3-5 RIR	60	3	/ ⊗

Total sets per week: 18

Add Exercise

Shoulder Endurance Posterior shoulder endurance test

Target exercise

Exercise	Sets	Reps	Load	Rest	Frequency	131
Reverse fly	3	15	3-5 RIR	60	3	/ ⊗
Side lying reverse fly	3	15	3-5 RIR	60	3	/ ⊗

Total sets per week: 18

Add Exercise

RIR = repetitions in reserve

SIR = seconds in reserve

Back

Reverse fly

Back

Rest weight on hands and knees

Back

Side lying reverse fly

Back

Block 3

Objectives:

- Increase strength into shoulder external rotation
- Improve strength in long lever/tennis specific positions

Shoulder Strength External rotation

Target exercise

Exercise	Sets	Reps	Load	Rest	Frequency	
Knee supported external rotation	3	6	1-3 RIR	120	2	/ ⊗
Prone external rotation	3	6	1-3 RIR	120	2	<i>*</i> ×

Total sets per week: 12

Add Exercise

Shoulder Strength Athletic shoulder test T

Target exercise

Exercise	Sets	Reps	Load	Rest	Frequency	
Single arm fly	3	6	1-3 RIR	120	2	/ €
Towel slider to T	3	6	1-3 RIR	120	2	<i>></i> ⊗

Back

Single arm fly

Back

Back

Towel slider to T

Back

Test Results

Weeks 1-6 Range of movement and endurance

Week 7-12 Strength

Symptoms

Weeks 1-12 Pain and function

Questions?

88

References

- Mayo Clinic. (n.d.). Tennis elbow: Symptoms and causes.
 https://www.mayoclinic.org/diseases-conditions/tennis-elbow/symptoms-causes/syc-20351987
- Cleveland Clinic. (n.d.). Tennis elbow (lateral epicondylitis).
 https://my.clevelandclinic.org/health/diseases/7049-tennis-elbow-lateral-epicondylitis
- WebMD. (n.d.). Tennis elbow (lateral epicondylitis).
 https://www.webmd.com/fitness-exercise/tennis-elbow-lateral-epicondylitis
- Physio-pedia. (n.d.). Biomechanics of lateral epicondylitis.
 https://www.physio-pedia.com/Biomechanics of Lateral Epicondylitis
- Clinical Pattern. (n.d.). ROM/MMT. https://app.clinicalpattern.com/rom_mmt